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Abstract

For a subset I ⊆ Fnq , let ∆(I) be the set of distances determined by the elements of
I. The Erdős-Falconer distance problem in Fnq asks for a threshold on the cardinality |I|
so that ∆(I) contains a positive proportion of the whole distance set. In this paper, we
consider the analogous question under Hamming distance, which is the most important
metric in coding theory. When q > 4 is a fixed prime power and n goes to infinity, our main
result shows that, for arbitrary positive proportion α, we can find αn distinct Hamming
distances in ∆(I) if |I| > q(1−β)·n, where β is a positive number depending on α. Unlike
using Fourier analytical method as usual, our main tools include the celebrated dependent
random choice and some results from additive number theory and coding theory. Hence
our bound is much smaller than the previously known bound which was obtained by
Fourier analytic machinery.

Key words and phrases: Erdős-Falconer distance problem, Hamming distance, dependent
random choice.
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1 Introduction

The classical Erdős-Falconer conjecture in the Euclidean setting says that if the Hausdorff
dimension of a set in Rd exceeds d

2
, then the Lebesgue measure of the distance set is positive.
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The first result on the Falconer distance conjecture [10] showed that if the Hausdorff dimension
of a set in Rd, d > 2, is greater than d+1

2
, then the Lebesgue measure of the Euclidean distance

set is positive. From then on, several research works improved this result via different methods,
e.g. see [4, 7, 8, 16, 19, 36] and the references therein.

Recently, finite field analogs of classical problems in harmonic analysis, geometry and com-
binatorics have received much attention because of the relative technical transparency afforded
by the discrete setting. In [22], Iosevich and Rudnev investigated the finite field analog of the
Erdős-Falconer distance problems and developed the Fourier analytic machinery to study such
combinatorial problems. For more literature on the Euclidean distance and related geometric
configurations, we refer the readers to [1, 15, 20, 21, 23] and the references therein. Very recent-
ly, Yazici [38] considered a similar problem under Hamming distance in Fnq . Using the Fourier

analytic machinery, Yazici proved that if |I| > qn−1

n

(
n
n
2

)(n
2
n
4

)
, 4|n, then the points of I determine

a Hamming distance d for every even 0 < d < n − 2. Inspired by Yazici’s result, in this paper
we further consider the Erdős-Falconer type problem under Hamming distance.

Let Fq be the finite field of order q, where q > 4 is a prime power. For two elements
a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in vector space Fnq , the Hamming distance between

a and b can be defined as dH(a, b) =
n∑
i=1

dH(ai, bi), where dH(ai, bi) equals 1 if ai 6= bi, and 0

otherwise. Let I be a subset of Fnq and I can be seen as a q-ary code of length n. In coding
theory, we usually consider the problems under the assumption that q is fixed and n → ∞.
The question we will be dealing with in this paper is that, how large does the size of I need to
be, to guarantee that ∆(I) contains the positive proportion of n. For convenience, we give the
following definition of α-distance q-ary code under Hamming distance.

Definition 1.1. Let I be a subset of Fnq , we call I an α-distance code if ∆(I) contains at least
αn distinct Hamming distances. Denote the function I(n, q, α) as the minimum size of I such
that if |I| > I(n, q, α) then I must be an α-distance code.

An Erdős-Falconer type problem under Hamming metric in Fnq can be written as follows.

Question 1.2. For given prime power q, and a real number 0 < α < 1, determine the value of
function I(n, q, α).

In this viewpoint, Yazici’s result [38] showed that I(n, q, 1
2
− 1

n
) 6 qn−1

n

(
n
n
2

)(n
2
n
4

)
with 4|n. We

will focus on the asymptotic behavior of this function assuming q is fixed and n → ∞. Our
main result shows that, for arbitrary positive proportion 0 < α < 1, there exists some positive
constant β = β(α), such that if |I| > q(1−β)·n then I must be an α-distance code.

Theorem 1.3. Let q > 4 be a prime power. For given 0 < α < 1, there exists a positive
constant β = β(α) > 0 such that

qHq(α−
1
n

)·n−o(n) 6 lim
n→∞

I(n, q, α) 6 q(1−β)·n,
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where Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).

The rest of this paper is organized as follows. In Section 2, we introduce some relevant
tools and results from coding theory, extremal combinatorics and number theory. The proof of
our main result is presented in Section 3. Finally we conclude this paper and pose some open
problems in Section 4.

2 Preliminaries

In this section, we briefly introduce three important tools which are useful in the proof of our
main result. We first introduce some basic knowledge on coding theory such as Hamming ball
and anti-code method. The second one is the celebrated dependent random choice which plays
an important role in extremal combinatorics. The third result is from additive number theory.

2.1 Coding theory

2.1.1 Hamming Ball

The fundamental problem in coding theory asks that for given minimum distance d and code
length n, how large of size can a q-ary code be? The direct theoretical bounds are so-called
Gilbert-Varshamov bound and sphere-packing bound, both of which depend on the volume of
Hamming ball. Recall that the Hamming ball of radius w in Fnq is the set Bq(n,w) of all q-ary
words of length n and Hamming weight at most w. Then the volume of Hamming ball Bq(n, pn)

is V olq(n, pn) =
pn∑
i=0

(
n
i

)
(q − 1)i. We will introduce the lower bound and the upper bound on

V olq(n, pn) as follows.

Proposition 2.1. Let q > 3 be an integer and 0 6 p 6 1− 1
q

be a real number. Then for large
enough n, we have

qHq(p)·n−o(n) 6 V olq(n, pn) 6 qHq(p)·n,

where Hq(x) = x logq(q − 1)− x logq x− (1− x) logq(1− x).
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Proof. First we prove V olq(n, pn) 6 qHq(p)·n and consider the following sequence of relations:

1 =(p+ (1− p))n

=
n∑
i=0

(
n

i

)
pi(1− p)n−i

>
pn∑
i=0

(
n

i

)
pi(1− p)n−i

=

pn∑
i=0

(
n

i

)
(q − 1)i(1− p)n(

p

(q − 1)(1− p)
)i

>
pn∑
i=0

(
n

i

)
(q − 1)i(1− p)n(

p

(q − 1)(1− p)
)pn

=

pn∑
i=0

(
n

i

)
(q − 1)i(

p

q − 1
)pn(1− p)(1−p)n.

In the above, the first inequality follows by dropping some terms from the summation and the
second inequality follows from the fact that p

(q−1)(1−p) 6 1 as q > 3, p 6 1− 1
q

and pn > 1. Since

q−Hq(p)·n = (
p

q − 1
)pn(1− p)(1−p)n,

the last expression implies that

V olq(n, pn) · q−Hq(p)·n 6 1.

To prove qHq(p)·n−o(n) 6 V olq(n, pn), we need the following Stirling’s approximation:

√
2πn(

n

e
)n 6 n! 6

√
2πn(

n

e
)neλ(n),

where λ(n) = 1
12n
. Since (

n

pn

)
=

n!

(pn)!(n− pn)!

>
(n
e
)n

(pn
e

)pn( (1−p)n
e

)(1−p)n
· e
−λ(pn)−λ(n−pn)√
2πp(n− pn)

=
`(n)

ppn(1− p)(1−p)n ,
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where `(n) = e−λ(pn)−λ(n−pn)√
2πp(n−pn)

. Now we have

V olq(n, pn) >

(
n

pn

)
(q − 1)pn

>
(q − 1)pn

ppn(1− p)(1−p)n · `(n)

>qHq(n)·n+logq(`(n)).

The proof is finished.

Remark 2.2. The function Hq(p) has several good properties. For example, Hq(p) < 1 for any
integer q > 3 and the real number 0 6 p 6 1 − 1

q
. Moreover, this function is monotonically

increasing in p while it is monotonically decreasing in q. In order to have a more intuitive
understanding of this function, let us show some examples in the figures as follows.

(a) H3(p) with 0 < p < 2
3 (b) H10(p) with 0 < p < 9

10

Remark 2.3. Consider the Hamming ball Bq(n, dαn−1
2
e) with radius dαn−1

2
e. It is easy to see

|∆(Bq(n, dαn−1
2
e))| 6 αn − 1. Combining with Proposition 2.1, we obtain the lower bound in

Theorem 1.3.

2.1.2 Anti-code method

To attack the fundamental problem in coding theory, many interesting theoretical bounds such
as Plotkin bound, Griesmer bound and Johnson bound were proposed via different ideas. For
more information on theoretical bounds in coding theory, we refer the readers to the textbook
[32] and the references therein. In analogy to the definition of a code, a subset A ⊆ Fnq is an
anti-code with maximal distance d, if any two of its elements are at distance at most d. The
anti-code method was usually used to construct codes that attain the Griesmer bound with
equality. In particular, the exact expressions of maximal anti-code can be used to derive better
upper bounds on the fundamental problem. Recently, many other variations on different spaces
and metrics have created a wealth of anti-codes (see, e.g. [9, 25, 29, 30]).
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Denote Cr(t) as the set

Cr(t) = {c ∈ Fnq : |{i : 1 6 i 6 t+ 2r, ci = 1}| > t+ r}.

A result from Frankl and Tokushige [12] showed that Cr(t) is the maximal non-binary anti-code
with maximal distance n− t under certain conditions.

Lemma 2.4 ([12]). Let q > 3, and set r := b t−1
q−2
c, then Cr(t) is the maximal anti-code with

maximal distance n− t for n > t+ 2r. Moreover, we have

|Cr(t)| = qn−t−2r

r∑
i=0

(
t+ 2r

i

)
(q − 1)i.

Using the previous result, we can obtain the following consequence.

Corollary 2.5. Let q > 3 and 1
2
< γ < 1. Set t := (1−α

2
) · n and r := b t−1

q−2
c. If n > t+ 2r, then

we have
|Cr(t)| 6 q(1−(1−Hq(γ))( 1−α

2
))·n.

Proof. By Proposition 2.1, we have |Cr(t)| 6 qn−(1−Hq( r
t+2r

))(t+2r). The result follows since
t+ 2r > (1−α

2
) · n and Hq(p) is monotonically increasing in p.

Remark 2.6. In our main result, we set q > 4 because when q = 2, the maximal anti-code is

Hamming ball exactly. On the other hand, when q = 2, the code C = {c :
n∑
i=1

ci ≡ 0 mod 2}

has size Ω(2n) but ∆(C) just contains about n
2

distinct distances. Moreover, when q = 3, if
α < 1

3
, then t+ 2r may be larger than n. Hence we will take advantage of Corollary 2.5 in the

proof of Lemma 3.7 under the assumption that q > 4.

2.2 Dependent random choice

Early versions of the dependent random choice lemma were proved and applied by various
researchers, starting with Gowers [13], who gave a new proof of Szemerédi’s theorem for arith-
metic progressions of length four. From then on, there have been several striking applications
of dependent random choice to extremal graph theory, Ramsey theory, additive combinatorics,
and combinatorial geometry. For more information, we refer the readers to the survey [11] and
the references therein. We state an asymmetric version of the dependent random choice lemma
and give a simple proof as follows.

Lemma 2.7. Let H = (A∪B,E) be a bipartite graph with |A| = n, |B| = m, and e(H) = Cnm.

For a given positive integer t, there will be a subset A′ ⊆ A with |A′| > Ct(n+1)
2

such that every

pair of vertices in A′ have at least Cmn−
1
t common neighbors.
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Proof. Pick a set T of t vertices from B uniformly at random with repetition. By linearity of
expectation, we have

E[|N(T )|] =
∑
a∈A

(
NB(a)

m
)t > n1−t(

∑
a∈A

(
NB(a)

m
))t = n1−t(Cn)t = Ctn,

here we take advantage of the convexity of the function f(z) = zt. Let Y denote the random vari-

able counting the number of pairs (a1, a2) ⊆ N(T ) with fewer than Cmn−
1
t common neighbors.

For a given such pair (a1, a2), the probability that it is a subset of N(T ) is ( |NB(a1)∩NB(a2)|
m

)t.

Since there are at most
(
n
2

)
pairs for which |NB(a1) ∩NB(a2)| < Cmn−

1
t , it follows that

E[Y ] <

(
n

2

)
(
|NB(a1) ∩NB(a2)|

m
)t =

Ct(n− 1)

2
.

Using the linearity of expectation again,

E[|N(T )| − Y ] > Ctn− Ct(n− 1)

2
=
Ct(n+ 1)

2
.

Hence there is a choice of T such that |N(T )| − Y > Ct(n+1)
2

. Delete one vertex from each pair

of vertices with fewer than Cmn−
1
t common neighbors. Let A′ be the remaining subset of A,

and it is easy to check that A′ has at least Ct(n+1)
2

vertices and each pair of vertices in A′ have

at least Cmn−
1
t common neighbors.

Remark 2.8. In this version of dependent random choice lemma, we do not require H to be
a dense graph. For instance, we can choose C = Θ(nc) instead of a constant, where c is a

negative number. In this case, we just need to verify that Ct(n+1)
2

> 2 and Cmn−
1
t > 2.

2.3 Additive number theory

Many classical problems in additive number theory revolve around the study of sum sets for
specific sets A and B. For example, let N2 = {1, 4, 9, 16, · · · } be the set of square numbers, then
there is a famous theorem of Lagrange that 4N2 = N, that is, every natural number is the sum
of four squares. Let P = {2, 3, 5, 7, · · · } be the set of prime number, the infamous Goldbach
conjecture asserts that 2P contains every even integer greater than 2, but this conjecture remains
far from resolution. In order to solve the Goldbach conjecture, there is a famous theorem of
Vinogradov [33], which states that (2 · N + 1) \ 3P is finite, i.e. every sufficiently large odd
number is the sum of three primes. For more information on additive number theory, we
refer the readers to the great textbooks [28] and [31]. Very recently, using the transference
principle introduced by Green [14], Matomäki, Maynard and Shao [26] showed an extension of
Vinogradov’s theorem as follows.
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Theorem 2.9 ([26]). Let θ > 11
20

. Every sufficiently large odd integer n can be written as a sum
of three primes n = p1 + p2 + p3 with |pi − n

3
| 6 nθ for i ∈ {1, 2, 3}.

Since the best known result on primes in short intervals due to Baker, Harman and Pintz [3]
showed the existence of primes in intervals [x, x+x0.525], we can obtain a consequence for large
even integer as follows.

Corollary 2.10. Let θ > 11
20

. Every sufficiently large even integer n can be written as a sum
of four primes n = p1 + p2 + p3 + p4 with |pi − n

4
| 6 nθ for i ∈ {1, 2, 3, 4}.

3 Proof of the main result

Our proof is under the assumption that q > 4 is a prime power and n goes to infinity.

3.1 The existence of small prime distances

The first step of our proof is to show the existence of small prime distances in ∆(I). We need
the following result in [2].

Lemma 3.1 ([2]). Let p be a prime and I ⊆ Fnq . If

|I| >
s∑
i=0

(q − 1)i
(
n

i

)
,

and s > p− 1, then there exists some element d ∈ ∆(I) such that d ≡ 0 mod p.

Then we show how to find prime distances in certain interval.

Lemma 3.2. For given real numbers 0 < α < 1 and 1
2
< γ < 1, let I be a subset of Fnq with

|I| > q(1− (1−α)(1−Hq(γ))
2

)·n. If p is a prime number with (1−α)·n
2

< p < γ · n, then ∆(I) contains p.

Proof. Suppose |I| > q(1− (1−α)(1−Hq(γ))
2

)·n, solving the following inequality on x,

n− x
2

< p < γ · (n− x),

we obtain that

n− 2p < x < n− p

γ
< (1− 1− α

2γ
) · n.

Now we choose a positive integer x from interval [n− 2p, n− p
γ
]. Consider the subset In−x of I

such that every element in In−x has the same first x coordinates. It is easy to see that

|In−x| > q(1− (1−α)(1−Hq(γ))
2

)·n−x.
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Since γ < 1 and x < (1− 1−α
2γ

) · n < (1− 1−α
2

) · n, we have that

(1−Hq(γ)) · (n− x) > (
(1−Hq(γ)(1− α))

2
) · n.

Hence

q(1− (1−α)(1−Hq(γ))
2

)·n−x > qHq(γ)·(n−x) >
γ(n−x)∑
i=0

(q − 1)i
(
n− x
i

)
.

We see that p < γ · (n − x), by Lemma 3.1, there exists some element d ∈ ∆(In−x) such that
d ≡ 0 mod p. Since p > n−x

2
, then we conclude ∆(In−x) contains the prime p. Now we have

found the prime distance p in ∆(I) since ∆(In−x) ⊆ ∆(I).

3.2 Find the small distances

The previous result guarantees the existence of small prime distances in ∆(I). Next we will
combine the operation from coding theory and the result from number theory to find the small
distances in ∆(I).

First we define the direct sum of two elements c1, c2 in Fn1
q and Fn2

q , respectively.

Definition 3.3. For given two disjoint subspaces Fn1
q and Fn2

q , we define the direct sum c1⊕ c2

of c1 ∈ Fn1
q and c2 ∈ Fn2

q as the element in Fn1+n2
q . More precisely, if we view c1 and c2 as

vectors in corresponding spaces, then the i-th coordinate of c1 ⊕ c2 is

(c1 ⊕ c2)i =

{
(c1)i, if i ∈ [1, n1]

(c2)i, otherwise.

Moreover, define the direct sum of I1 ⊆ Fn1
q and I2 ⊆ Fn2

q as

I1 ⊕ I2 = {c1 ⊕ c2 : c1 ∈ I1, c2 ∈ I2}.

Lemma 3.4. For given integers n1, n2, d1 and d2, let I1 ∈ Fn1
q and I2 ∈ Fn2

q . Let δ1, δ2 and t
satisfy the following conditions

• if |I1| > δ1q
n1 , then d1 ∈ ∆(I1),

• if |I2| > δ2q
n2 , then d2 ∈ ∆(I2),

• 2δ1δ
−t
2 > qn1 .

Then for any subset I ⊆ Fn1+n2
q with |I| > (2δ1)

1
t qn1+n2 , ∆(I) contains distance d1 + d2.
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Proof. For a given subset I ⊆ Fn1+n2
q with |I| > (2δ1)

1
t qn1+n2 , consider the bipartite graph

H = (A ∪ B,E) with A = Fn1
q and B = Fn2

q such that two vertices a ∈ A and b ∈ B are

adjacent if a ⊕ b ∈ I. It is easy to see the number of edges in H is e(H) > (2δ1)
1
t qn1+n2 . By

Lemma 2.7, there exists a subset A′ ⊆ A with at least δ1(qn1 + 1) vertices such that, every pair

(a1,a2) ⊆ A′ has at least (2δ1)
1
t qn2−n1t common neighbors. By the property of δ1, there exists

a pair (a1,a2) ⊆ A′ such that dH(a1,a2) = d1. Fix such a pair (a1,a2), the set of common
neighbors NB(a1,a2) satisfies

|NB(a1,a2)| > (2δ1)
1
t qn2−n1t > δ2q

n2 .

Hence there exists a pair (b1, b2) ⊆ NB(a1,a2) such that dH(b1, b2) = d2. Now we have found
a pair of elements (a1 ⊕ b1,a2 ⊕ b2) ⊆ I such that dH(a1 ⊕ b1,a2 ⊕ b2) = d1 + d2.

Now we are ready to show the existence of small distances in ∆(I). First we consider the
complicated case that d is even. As we can see from Corollary 2.10, we can only guarantee that
a large even natural number can be written as the sum of four almost equal primes.

Lemma 3.5. Let ε > 0 be a sufficiently small real number and 1
2
< γ < 1. For a given even

integer d with (1−α
2

) · n 6 d 6 (γ − ε) · n, if a code I ⊆ Fnq satisfies |I| > q(1− (1−α)4(1−Hq(γ))4

3·217
)·n,

then d ∈ ∆(I).

Proof. As (1−α
2

) · n 6 d 6 (γ − ε) · n, by Corollary 2.10, we can write the even distance d as

d = d1 + d2 + d3 + d4

such that di is prime and |di − d
4
| 6 dθ with θ > 11

20
for i ∈ {1, 2, 3, 4}.

On the other hand, we can partition n into four almost equal parts, that is,

n = n1 + n2 + n3 + n4

such that |ni − n
4
| 6 1 for i ∈ {1, 2, 3, 4}.

As n→∞, we show the direct lower bound and upper bound for di as follows.

di >
d

4
− dθ > (

1− α
8

) · n− dθ > (
1− α

4
) · ni,

di 6
d

4
+ dθ 6 (

γ − ε
4

) · n+ dθ 6 γ · ni.

Now we partition Fnq into four disjoint parts Fn1
q , Fn2

q , Fn3
q and Fn4

q . Lemma 3.2 tells that if Ii ∈
Fniq with |Ii| > q(1− (1−α)(1−Hq(γ))

2
)·ni , then ∆(Ii) contains the prime number di ∈ ((1−α

2
) ·ni, γ ·ni),

for i ∈ {1, 2, 3, 4}.
Then we want to find distance d1 + d2 in ∆(I1 ⊕ I2), for convenience, write I1 ⊕ I2 as I1,2.

We will take advantage of Lemma 3.4. We begin to confirm the following conditions.
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• |I1| > q(1− (1−α)(1−Hq(γ))
2

)·n1 ,

• |I2| > q(1− (1−α)(1−Hq(γ))
2

)·n2 ,

• 2 · q−(
(1−α)(1−Hq(γ))

4
)·n1 · q(

(1−α)(1−Hq(γ))
4

)·n2t1 > qn1 .

Solving the third inequality, we can set t1 = d 8
(1−α)(1−Hq(γ))

e. After some easy calculations, we

obtain that if |I1,2| > q(1− (1−α)2(1−Hq(γ))2

128
)·(n1+n2), then ∆(I1,2) contains the distance d1 +d2. Then

we use Lemma 3.4 again, that is, we need to confirm the following conditions.

• |I1,2| > q(1− (1−α)2(1−Hq(γ))2

128
)·(n1+n2),

• |I3| > q(1− (1−α)(1−Hq(γ))
2

)·n3 ,

• 2 · q(1− (1−α)2(1−Hq(γ))2

128
)·(n1+n2) · q(

(1−α)(1−Hq(γ))
4

)·n3t2 > qn1+n2 .

We can set t2 = d 16
(1−α)(1−Hq(γ))

e. Denote I1,2,3 = I1 ⊕ I2 ⊕ I3, similarly we obtain that if

|I1,2,3| > q(1− (1−α)3(1−Hq(γ))3

3·211
)·(n1+n2+n3), then ∆(I1,2,3) contains the distance d1 + d2 + d3. We will

use Lemma 3.4 for the last time by checking the following conditions.

• |I1,2,3| > q(1− (1−α)3(1−Hq(γ))3

3·211
)·(n1+n2+n3),

• |I4| > q(1− (1−α)(1−Hq(γ))
2

)·n4 ,

• 2 · q(1− (1−α)3(1−Hq(γ))3

3·211
)·(n1+n2+n3) · q(

(1−α)(1−Hq(γ))
4

)·n4t3 > qn1+n2+n3 .

We can set t3 = d 24
(1−α)(1−Hq(γ))

e. Finally, we obtain that if |I| > q(1− (1−α)4(1−Hq(γ))4

3·217
)·n, then

d ∈ ∆(I). The proof is finished.

Remark 3.6. When d is odd, we can obtain a similar result via Theorem 2.9. The arguments
for odd case are easier and the threshold on cardinality |I| is smaller than that in Lemma 3.5.

3.3 Find the large distances

In the last step, we want to find the remaining distances in our code I, that is, we will show the
existence of the distances d ∈ [(γ − ε) · n, (1+α

2
) · n]. First we recall two results we have shown

in Lemma 2.4 and Lemma 3.5.

11



• If I ∈ Fnq satisfies |I| > q(1−f1( 1−α
2

))·n, then ∆(I) contains some distance d ∈ ((1+α
2

) · n, n],

where f1(1−α
2

) = (1−Hq(γ−ε))·(1−α)

2
.

• If I ∈ Fnq satisfies |I| > q(1−f2( 1−α
2

))·n, then ∆(I) contains all distances d in interval

[(1−α
2

) · n, (γ − ε) · n], where f2(1−α
2

) = (1−α)4(1−Hq(γ))4

3·217 .

Our goal is to prove the following result.

Lemma 3.7. Let c, ε > 0 be sufficiently small real numbers and 1
2
< γ < 1. For a given integer

d with (γ−ε) ·n 6 d 6 (1+α
2

) ·n, if a code I ⊆ Fnq satisfies |I| > q(1− (1−α)·f1(
(1−α)(γ−ε−c)

4 )·f2(
γ−ε
2 −c)

32
)·n,

then d ∈ ∆(I).

Proof. Suppose that d is even and the case of odd d is similar. We first partition Fnq into two
disjoint parts Fn1

q and Fn2
q , where n = n1 + n2. Moreover, we need the following conditions on

n1, n2 and d.

• |n1 + (γ−ε)·n2

2
− d| 6 1,

• n
4
6 n1 6

(1+α)·n
2

.

Then we will show that there exists some distance d̄ ∈ [(1 − (1−α)·(γ−ε−c)
4

) · n1, n1]. Similar as
Lemma 3.4, we consider the corresponding bipartite graph H = (A ∪ B,E) with A = Fn1

q

and B = Fn2
q such that a ∈ A is adjacent to b ∈ B if a ⊕ b ∈ I. It is easy to see e(H) >

q−(
(1−α)·f1(

(1−α)(γ−ε−c)
4 )·f2(

γ−ε
2 −c)

32
)·n · qn. Using Lemma 2.7 and setting t = d 4

(1−α)·f2( γ−ε
2
−c)e, we can

find a subset A′ ⊆ A with size

|A′| >q
−(

(1−α)·f1(
(1−α)(γ−ε−c)

4 )·f2(
γ−ε
2 −c)

32
)·nt · (qn1 + 1)

2

>
q−

f1(
(1−α)(γ−ε−c)

4 )·n
8 · (qn1 + 1)

2

>q−
f1(

(1−α)(γ−ε−c)
4 )·n
4 · qn1

>q(1−f1(
(1−α)(γ−ε−c)

4
))·n1 ,

where the last inequality is from the assumption n1 > n
4
. Using Lemma 2.4, there is some pair

(a1,a2) ⊆ A′ such that dH(a1,a2) = d̄ ∈ [(1− (1−α)·(γ−ε−c)
4

) ·n1, n1]. Moreover, we consider the
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set NB(a1,a2) which consists of all common neighbors in B = Fn2
q . Using Lemma 2.7, we have

|NB(a1,a2)| >q−
(1−α)·f1(

(1−α)(γ−ε−c)
4 )·f2(

γ−ε
2 −c)·n

32 · |A|−
1
t · |B|

>q−
2n1
t

+n2

>q
−2(1−α)f2(

γ−ε
2 −c)·n1

4
+n2

>q(1−f2( γ−ε
2
−c))·n2 ,

where the last inequality holds since n1

n2
= n1

n−n1
6 1+α

1−α < 2
1−α . Now we have shown that

∆(NB(a1,a2)) contains every distance in [(γ−ε
2
− c) · n2, (γ − ε) · n2]. Under the assumption

that |n1 + (γ−ε)·n2

2
− d| 6 1, one can easily check that d− d̄ ∈ [(γ−ε

2
− c) · n2, (γ − ε) · n2]. Hence

there exists (b1, b2) ∈ NB(a1,a2) such that dH(b1, b2) = d − d̄. Now we have found a pair of
elements (a1 ⊕ b1,a2 ⊕ b2) ⊆ I satisfying dH(a1 ⊕ b1,a2 ⊕ b2) = d.

Proof of Theorem 1.3. Combining Lemma 3.2, Lemma 3.5 and Lemma 3.7 together gives the
existence of any distance in [ (1−α)·n

2
, (1+α)·n

2
], and the parameter β in Theorem 1.3 can be taken

as

min{
(1− α) · f1( (1−α)(γ−ε−c)

4
) · f2(γ−ε

2
− c)

32
,
(1− α)4 · (1−Hq(γ))4

3 · 217
},

the proof of our main result is finished.

4 Conclusions and some open problems

In this paper, we consider the Erdős-Falconer type problem under Hamming distance in vector
spaces over finite fields. More precisely, under the assumption that q is fixed and n goes to
infinity, our main result shows that for arbitrary positive proportion α, we can find αn distinct
Hamming distances in code I with |I| > q(1−β)·n, where β = β(α) > 0. Unlike using the
Fourier analytical method in [38], we propose a combinatorial approach, which can overcome
the shortcomings of Fourier analytical methods. Moreover, we provide the general quantitative
results of β = β(α), which are dependent on several state-of-the-art results from number theory
and coding theory. It will be interesting to improve the quantitative results of β(α) using
different ideas.

For Erdős-Falconer type problems under Euclidean metric and Hamming metric, there are
some interesting differences between them. For example, under Euclidean distance, Murphy
and Petridis [27] proved that there exists a subset E ⊆ F2

q such that |E| = q
4
3 and |∆(E)|

q
6 1

2

as q →∞. While in our issue, we do not face such a limitation of the proportion 1
2
. Moreover,

there is a well-known result proved by Guth and Katz [17] that any set of n points in plane

13



determines at least Ω( n
logn

) distinct distances. The similar question under Hamming distance

is that, how large does the size of I ⊆ Fnq need to be, to guarantee that ∆(I) contains at least
Ω( n

logn
) distinct Hamming distances? Lemma 3.2 indicates that approximately the size exceeds

q
(1+Hq(1/2))·n

2 suffices as n→∞. Improving this result may be of independent interest.
In addition to Euclidean metric and Hamming metric, there are many other different metrics

that play an important role in coding theory and applications. Moreover, it will be interesting
to study the Erdős-Falconer type problem in other spaces rather than finite field. We list some
of them for further research. The first example is permutation code, which has been extensively
studied due to its potentials in various applications such as DNA storage and flash memory.
Let π = (π(1), π(2), . . . , π(n)) be a permutation over [n], known as the vector notation of a
permutation.

1. Hamming distance: We can view permutation code as a special case of multiply con-
stant weight q-ary code (see, e.g. [6, 34]). Using this relationship, we can obtain a similar
result as Theorem 1.3, that is, a permutation code C ⊆ Sn can determine arbitrary posi-
tive proportion α of distance set [n] with |C| > (n!)1−β, β = β(α) > 0. It will be interesting
to improve this bound via special properties of permutation codes.

2. Kendall’s τ-distance: Given a permutation π = (π(1), π(2), . . . , π(n)), an adjacent
transposition is an exchange of two adjacent elements π(i), π(i+1), for some 1 6 i 6 n−1,
resulting in the permutation (π(1), . . . , π(i−1), π(i+1), π(i), π(i+2), . . . , π(n)). Then the
Kendall’s τ -distance dK(σ, π) is the minimum number of adjacent transpositions required
to transform one permutation into the other. Several useful results have been proposed in
[5, 35], where the maximal anti-code can be determined in certain conditions. However,
our method fails in this situation since the idea of direct sum under Kendall’s τ -metric
does not work.

3. Block permutation distance: Given a permutation π = (π(1), π(2), . . . , π(n)), denote
the characteristic set A(π) as A(π) , {(π(i), π(i + 1)) : 1 6 i 6 n − 1}. Then the block
permutation distance can be represented by the following formula

dB(σ, π) = |A(π) \ A(σ)|.

The volume of ball in this metric has been estimated (see [37]), but we do not know the
structure of maximal anti-codes in general.

We are also interested in the Lee metric (also called the zig-zag metric, the `1-norm), due to its
applications in interleaving schemes and multidimensional burst-error-correction. Moreover, the
so-called Golomb-Welch conjecture (see the survey paper [18] and recent progresses [24, 39]) is
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based on this metric. For any two words u = (u1, u2, . . . , un) ∈ Zn and v = (v1, v2, . . . , vn) ∈ Zn,
the Lee metric between them is defined as

dL(u,v) =
n∑
i=1

|ui − vi|.

However, the situation is worse when we consider the Erdős-Falconer type problem under Lee
metric, since we just know how to estimate the volume of Lee ball. More new ideas are needed
to deal with this problem.
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